
Practical Challenges and Insights
in Concept Drift Research

Discovering Drift Phenomena in Evolving Landscape (DELTA 2024)

ACM SIGKDD 2024 workshop

Heitor Murilo Gomes

https://heitorgomes.com/

Victoria University of Wellington, New Zealand

https://capymoa.org/

https://heitorgomes.com/

Heitor Murilo Gomes

Senior lecturer at the Victoria University of Wellington (VuW) in New
Zealand. Before joining VuW, Heitor was co-director of the AI Institute at
the University of Waikato.

Research interests: ML for data streams, ensemble learning, semi-
supervised learning, concept drift detection/adaptation, …

 
PI of a few research projects ranging from applied to fundamental research,
i.e. ML for energy prediction, novel methodologies for stream learning, …

Leads the capymoa (https://capymoa.org/) open source library for data
stream learning, and provide support for MOA (Massive On-line Analysis).

https://heitorgomes.com/

https://capymoa.org/
https://heitorgomes.com/

About this talk
Brief introduction

Practical challenges

- Simulation

- Evaluation

- Using drift detectors

Other challenges

- Recurrent concept drifts

- Delayed & Unsupervised drift detection

Brief Introduction

Learns from static data

Uses a large amount of computing

Can only predict after (extensive)
training.

Should re-train after a concept drift

Train data Test data

[1]

[1] https://www.onaudience.com/resources/what-is-data-stream-and-how-to-use-it/

Batch Learning vs Stream Learning (SL)

Learns from a stream of data

Incrementally online learn form
instance/mini-batch.

Should use limited computing resources.

Able to predict at any given moment.

Should adapt to concept drifts online.

5

Concept Drift

concept drift

Concept Drift (categorisation)

abrupt drift

incremental drift recurrent concept drift

gradual drift

Practical challenges

CapyMOA
Machine learning
for data streams
https://capymoa.org/

https://github.com/adaptive-
machine-learning/CapyMOA

v0.7.0

https://capymoa.org/
https://github.com/adaptive-machine-learning/CapyMOA
https://github.com/adaptive-machine-learning/CapyMOA

CapyMOA

A machine learning library for streaming data based on four pillars:

• Efficiency

• Interoperability

• Accessibility

• Flexibility

First released on May 03, 2024

Other frameworks: MOA (java)1, river (python)2 and scikit-multiflow (python)3

[1] Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., & Seidl, T. (2010). Moa: Massive online analysis, a framework for stream classification and clustering.
In Workshop on applications of pattern analysis (pp. 44-50). PMLR.

[3] Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-output streaming framework. Journal of Machine Learning Research, 19(72), 1-5.

[2] Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T. and Bifet, A., 2021.
River: machine learning for streaming data in python. Journal of Machine Learning Research, 22(110), pp.1-8.

Why? Efficiency

Reproducibility: https://github.com/adaptive-machine-learning/CapyMOA/blob/main/notebooks/benchmarking.py

Simulating Concept Drifts

Concept drift is hard to define in a real data stream

Thus, studying it using real data can be challenging

One approach is to use synthetic data for studying and
benchmarking algorithms

“Model a concept drift event as a weighted combination of
two pure distribution that characterizes the target concepts
before and after the drift.” [Bifet et al, 2011]

[Bifet et al, 2011] Bifet, A., & Kirkby, R. (2011). Data stream mining a practical approach. Chapter 2.7.1

Concept Drift Framework

Recursive definition
• Most tools (MOA[1], river[2], scikit-multiflow[3], …) uses a recursive approach to

specify concept drift locations like:

CDS(CDS(SEA(1), SEA(2), 1000), SEA(3), 2000)

• Where we specify the drift position and the width of a drift (if it is a Gradual Drift)
recursively.

• This can lead to some confusion depending on where the recursion is placed

[1] Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., & Seidl, T. (2010). Moa: Massive online analysis, a framework for stream classification
and clustering. In Workshop on applications of pattern analysis (pp. 44-50). PMLR.

[3] Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-output streaming framework. Journal of Machine Learning Research, 19(72), 1-5.

[2] Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T. and Bifet, A., 2021.
River: machine learning for streaming data in python. Journal of Machine Learning Research, 22(110), pp.1-8.

Explicit list
In CapyMOA [1], the concepts and drifts are clearly outlined on a list format through a DriftStream

Drift position + drift width:
• The start and end of a concept is determined by the presence of an AbruptDrift or GradualDrift object

DriftStream([SEA(1), AbruptDrift(position=1000), SEA(2), GradualDrift(position=2000, width=500), SEA(3)])

The GradualDrift can also be specified in terms of start and end:
 
DriftStream([SEA(1), AbruptDrift(position=1000), SEA(2), GradualDrift(start=1750, end=2250), SEA(3)])

• This can make the drift locations more explicit and easy for new comers

[1] CapyMOA, https://capymoa.org

https://capymoa.org

Code example
DriftStream(stream=[SEA(function=1),

 AbruptDrift(position=5000),

 SEA(function=3),

 GradualDrift(position=10000, width=2000),

 SEA(function=1)])

See more on the drift stream tutorial at https://capymoa.org/notebooks/04_drift_streams.html

Stream(moa_stream=ConceptDriftStream(),

 CLI=‘-s
(ConceptDriftStream -s
generators.SEAGenerator -d
(generators.SEAGenerator -f 3) -p 5000 -w
1) -d generators.SEAGenerator -w 2000 -p
10000 -r 1’)

Both approaches will generate
a similar output.
The second one use
CapyMOA generic API to
invoke the MOA CLI

https://capymoa.org/notebooks/04_drift_streams.html

Common approach (proxy): “Attach the method to a classifier, if the accuracy goes
up, then the detector works”

Not necessarily the detector is successful in detecting changes, maybe it is just
randomly resetting the classifier!

We must use specific metrics to evaluate a detector

Evaluation (detectors)

Accuracy

Time

Evaluation (detectors)
Important: we need the ground-truth of drift location for some of these

Some Metrics:

• Recall, Precision, …

• Number of detections

• Mean Time between False Alarms (MTFA)

• Mean Time to Detection (MTD)

• And others: MDR, ARL, MTR, …

Bifet, A. (2017). Classifier concept drift detection and the illusion of progress. In Artificial Intelligence and Soft Computing ICAISC, 2017

Evaluation (detectors)
We might want to only account for detections if they are within a max_delay

Let’s assume in the example below that yellow stars are detections, we can observe
some delay between the drifts (red vertical lines or rectangles (gradual)) and detections.

See more on https://capymoa.org/notebooks/drift_detection.html

DelayDelay

https://capymoa.org/notebooks/drift_detection.html

Evaluation (detectors)
We might want to only account for detections if they are within a max_delay

Let’s assume in the example below that yellow stars are detections, we can observe
some delay between the drifts (red vertical lines or rectangles (gradual)) and detections.

See more on https://capymoa.org/notebooks/drift_detection.html

We can also specify max_delay to determine when a detection should be considered a TP

https://capymoa.org/notebooks/drift_detection.html

Using Drift Detectors

Ideally, using concept drift detectors should be straightforward

There should be some way to update it with new values, and
some way of detecting that a drift has been detected

Bifet, A. (2017). Classifier concept drift detection and the illusion of progress. In Artificial Intelligence and Soft Computing ICAISC, 2017

Using Drift Detectors
Create a learner nb, create a detector, declare the stream, …

while stream_sea1drift.has_more_instances() and i < max_instances:
 instance = stream_sea1drift.next_instance()
 pred = nb.predict(instance)
 evaluator.update(instance.y_index, pred)

 is_correct = int(pred == instance.y_index)

 detector.add_element(is_correct)

 if detector.detected_change():
 print('Change detected at instance: ' + str(i))

 nb.train(instance)
…

See notebook 05_KDD2024_solutions.ipynb at https://adaptive-machine-learning.github.io/kdd2024_ml_for_streams/

https://adaptive-machine-learning.github.io/kdd2024_ml_for_streams/

Recurrent Concept Drifts

Recurrent Concept Drifts

a) abrupt recurrent drift

b) incremental recurrent drift

c) gradual recurrent drift

• by concept transition
• by time of recurrence

N Gunasekara, B Pfahringer, HM Gomes, A Bifet, Y S Koh. Recurrent Concept Drifts on Data Streams. International Joint Conferences on Artificial Intelligence (IJCAI), 2024

Recurrent Concept Drifts

• by concept transition

a) abrupt recurrent drift

b) incremental recurrent drift

c) gradual recurrent drift

Recurrent Concept Drifts

• by concept transition

a) abrupt recurrent drift

b) incremental recurrent drift

c) gradual recurrent drift

Recurrent Concept Drifts

• by concept transition

a) abrupt recurrent drift

b) incremental recurrent drift

c) gradual recurrent drift

Recurrent Concept Drifts

• by concept transition

a) abrupt recurrent drift

b) incremental recurrent drift

c) gradual recurrent drift

Recurrent Concept Drifts

• by concept transition cont..

d) partial recurrent drift

e) evolving recurrent drift

Recurrent Concept Drifts

• by concept transition cont..

d) partial recurrent drift

e) evolving recurrent drift

Recurrent Concept Drifts
• by time of recurrence

a) periodic recurrent drifts

b) semi-periodic recurrent drifts

c) random recurrent drifts

Recurrent Concept Drifts
• by time of recurrence

a) periodic recurrent drifts

b) semi-periodic recurrent drifts

c) random recurrent drifts

Recurrent Concept Drifts
• by time of recurrence

a) periodic recurrent drifts

b) semi-periodic recurrent drifts

c) random recurrent drifts

Recurrent Concept Drifts
• by time of recurrence

a) periodic recurrent drifts

b) semi-periodic recurrent drifts

c) random recurrent drifts

Drift Re-Cap

• Many types of drifts
• abrupt, incremental, gradual and recurrent

• Many types of recurrent concept drifts
• by transition
• by recurrence

Learners that cope with recurrent CD

• Ideally, these methods attempt to retain the knowledge acquired on a
given concept and reuse it whenever that concept reappears.

• Simple example: Maintain a pool of learners, somehow identify if a
concept is related to a given learner from the pool.

• Challenges:

• identify the compatibility of two concepts

• maintain the pool of learners

Methods
deviation between current and historic concept clusters was
used to identify concept drifts and recurring concepts. A sim-
ilar approach was proposed in SUN [Wu et al., 2012]. There
instead of k-Means, authors used k-Modes as the clustering
algorithm. A framework using the Context Spaces Model
with Context Information was proposed in ContexTrac to rep-
resent different concepts [Gomes et al., 2012]. However,
they did not elaborate on a method to extract Context Infor-
mation from a concept. A clustering-based semi-supervised
framework, ESCR [Zheng et al., 2021], uses Jensen Shannon
divergence on classification confidence score [Haque et al.,
2016] to detect recurrent concept drifts. It detects recurring
concept drift by looking for any significant change in clas-
sifier confidence scores. Then, it determines the possibility
of recurring concept drift via Jensen-Shannon divergence by
calculating the distance between two confidence score dis-
tributions. ESCR performed better than REDLLA and RCD
on some synthetic datasets. However, its performance was
poor compared to other baselines when the dataset contains
irrelevant attributes. CDMSE [Li et al., 2021] works with
missing labeled data. There, the predicted class labels by an
ensemble model were partitioned into clusters for each data
chunk to infer their class labels. Then a concept drift detec-
tion method based on the divergence of distributions between
adjoining data chunks was used to distinguish recurring con-
cept drifts. The method performed slightly better than SUN
and REDLLA on different percentages of unlabeled data.
CCP [Katakis et al., 2010] is a very early method that used
data stream clustering for SL on data streams with recurrent
concept drifts. It proposes a general framework for classify-
ing data streams by exploiting stream clustering to build and
update an ensemble of incremental classifiers dynamically.
Data stream clustering framework UClust [Namitha and San-
thosh Kumar, 2020] was proposed to handle unlabeled data
streams with recurrent concepts. Clusters detected through
CluStream [Aggarwal et al., 2003] were used to detect drifts
and identify concept recurrences. In the CDCMS framework,
clustering in the model space was used to build a diverse
ensemble and identify recurring concepts [Chiu and Minku,
2020]. The authors argue that diversity accelerates adaptation
to different types of drifts when the new concept is similar to
the past concepts.

3.4 Drift Prediction
Some methods attempt to predict the next drift or the con-
cept, considering the recurrent nature of the concept’s ap-
pearance in the stream. These methods try to either proac-
tively influence the drift detection mechanism or re-actively
correct the detection signal by the drift detector. MM-PRec
[Angel et al., 2016] trains a meta-learner that uses a Hid-
den Markov Model to predict when a drift will happen and
the most suitable concept for each situation if it is recur-
rent. To measure concept similarity, the authors used a func-
tion based on fuzzy logic. The extra computing required to
train the meta-model was identified as the method’s main
drawback. Predictive Change Confidence Function (PCCF)
for modeling recurrent changes and predicting change points
was derived using the average time between changes and its
standard deviation [Maslov et al., 2016].The PCCF mod-

Sec Method Year DD DP LM LN/A MetaL MetaF Clust CEqSim Ens CPool
3.1 LEARN++⇤ 2011 X X

PMRCD 2012 X X
Dynse 2018 X X
ASE 2017 X X
GraphPool 2018 X X X

3.2 RCD 2013 X X X X X
CPF 2016 X X X X
ECPF 2019 X X X X
PEARL 2022 X X X X

3.3 REDLLA 2012 X X X X X
SUN 2012 X X X X X
ContexTrac 2012 X X X X
ESCR 2021 X X X X X
CDMSE 2021 X X X X
CCP 2010 X X X
UClust 2020 X X X X X X X
CDCMS 2020 X X X

3.4 MM-PRec 2016 X X X X X
PCCF 2016 X
BLPA 2017 X X
CPRD 2019 X X
ProSeed 2016 X X
ProChange 2018 X X X
MDP 2018 X X X X
Nacre 2021 X X X

3.5 SELeCT 2022 X X
FiCSUM 2023 X X

Table 1: Design components of the proposed methods for recur-
rent concept drifts in each section (Sec). DD: Drift Detection, DP:
Drift Prediction, LM: Labels Missing, LN/A: Labels Not Available,
MetaL: Meta Learning, MetaF: Meta Features, Clust: Clustering
CEqSim: Conceptual Equivalence/Concept Similarity, Ens: Ensem-
ble, CPool: Concept Pool. LEARN++⇤: LEARN++.NSE

els recurrent streams as convolutions of Gaussian distribu-
tions of the time intervals between changes. The method
can be used to post-process a detection by a drift detec-
tor or dynamically adjust the sensitivity of a drift detector.
Later, BLPA [Maslov et al., 2017] used PCCF to improve
Bayesian Online Change Point Detector (BOCPD) [Adams
and MacKay, 2007] for recurrent concept drifts. BOCPD
was also used to develop Change Point Recurrence Distri-
bution (CPRD) as an empirical estimate of the recurrent
behavior of observed change points [Reich et al., 2019a;
Reich et al., 2019b]. ProSeed [Chen et al., 2016] uses a prob-
abilistic network that uses stream volatility patterns to predict
future changes. Like PCCF, this method also works indepen-
dently of the drift detection technique. ProSeed was incor-
porated into the drift detector SEED [Huang et al., 2014] to
yield a proactive drift detector. Experimental results showed
that ProSeed performed better than reactive drift detectors for
data streams with reoccurring volatility trends. The same ap-
proach was used in ProChange [Koh et al., 2018] to improve a
drift detector using Hellinger distance to detect virtual drifts
and Hoeffding inequality to detect real drifts for unlabeled
transactional data. Metadata Drift Predictor (MDP) proposes
a dynamically adapting drift detector using drift-related meta-
data clustering [Anderson et al., 2018]. MDP allows the drift
detector to be more sensitive when metadata is similar to
past drifts and more conservative when metadata is dissim-
ilar. In their empirical evaluations, MDP performed more ac-
curately compared to ProSeed. Nacre proposes a framework
that contains a recurrent drift classifier, a sequence predic-
tor, and a drift coordinator for smooth adaptation of recurrent
concept drifts [Wu et al., 2021]. The recurrent drift clas-
sifier maintains a concept repository for previously learned
concepts. The drift sequence predictor predicts the next drift
point based on the previous drift intervals. The drift coor-
dinator manipulates the recurrent drift classifier and the drift

Please refer to section 3 of the survey for more information

Explicit Handling of Recurrences
(model for each data batch)

Meta Learning
(act as a wrapper algorithm to determine

the best model/s for the current concept)

Clustering

Drift Prediction

Meta Features

Design components:

• DD: Drift Detection

• DP: Drift Prediction

• LM: Labels Missing

• LN/A: Labels Not Available

• MetaL: Meta Learning

• MetaF: Meta Features

• Clust: Clustering

• CEqSim: Conceptual Equivalence/Concept Similarity

• Ens: Ensemble

• CPool: Concept Pool.

N Gunasekara, B Pfahringer, HM Gomes, A Bifet, Y S Koh. Recurrent Concept Drifts on Data Streams. International Joint Conferences on Artificial Intelligence (IJCAI), 2024

Design components: DD: Drift Detection, DP: Drift Prediction, LM: Labels Missing, LN/A: Labels Not Available, MetaL: Meta Learning, MetaF: Meta Features, Clust: Clustering, CEqSim:
Conceptual Equivalence/Concept Similarity, Ens: Ensemble, CPool: Concept Pool.

Methods
deviation between current and historic concept clusters was
used to identify concept drifts and recurring concepts. A sim-
ilar approach was proposed in SUN [Wu et al., 2012]. There
instead of k-Means, authors used k-Modes as the clustering
algorithm. A framework using the Context Spaces Model
with Context Information was proposed in ContexTrac to rep-
resent different concepts [Gomes et al., 2012]. However,
they did not elaborate on a method to extract Context Infor-
mation from a concept. A clustering-based semi-supervised
framework, ESCR [Zheng et al., 2021], uses Jensen Shannon
divergence on classification confidence score [Haque et al.,
2016] to detect recurrent concept drifts. It detects recurring
concept drift by looking for any significant change in clas-
sifier confidence scores. Then, it determines the possibility
of recurring concept drift via Jensen-Shannon divergence by
calculating the distance between two confidence score dis-
tributions. ESCR performed better than REDLLA and RCD
on some synthetic datasets. However, its performance was
poor compared to other baselines when the dataset contains
irrelevant attributes. CDMSE [Li et al., 2021] works with
missing labeled data. There, the predicted class labels by an
ensemble model were partitioned into clusters for each data
chunk to infer their class labels. Then a concept drift detec-
tion method based on the divergence of distributions between
adjoining data chunks was used to distinguish recurring con-
cept drifts. The method performed slightly better than SUN
and REDLLA on different percentages of unlabeled data.
CCP [Katakis et al., 2010] is a very early method that used
data stream clustering for SL on data streams with recurrent
concept drifts. It proposes a general framework for classify-
ing data streams by exploiting stream clustering to build and
update an ensemble of incremental classifiers dynamically.
Data stream clustering framework UClust [Namitha and San-
thosh Kumar, 2020] was proposed to handle unlabeled data
streams with recurrent concepts. Clusters detected through
CluStream [Aggarwal et al., 2003] were used to detect drifts
and identify concept recurrences. In the CDCMS framework,
clustering in the model space was used to build a diverse
ensemble and identify recurring concepts [Chiu and Minku,
2020]. The authors argue that diversity accelerates adaptation
to different types of drifts when the new concept is similar to
the past concepts.

3.4 Drift Prediction
Some methods attempt to predict the next drift or the con-
cept, considering the recurrent nature of the concept’s ap-
pearance in the stream. These methods try to either proac-
tively influence the drift detection mechanism or re-actively
correct the detection signal by the drift detector. MM-PRec
[Angel et al., 2016] trains a meta-learner that uses a Hid-
den Markov Model to predict when a drift will happen and
the most suitable concept for each situation if it is recur-
rent. To measure concept similarity, the authors used a func-
tion based on fuzzy logic. The extra computing required to
train the meta-model was identified as the method’s main
drawback. Predictive Change Confidence Function (PCCF)
for modeling recurrent changes and predicting change points
was derived using the average time between changes and its
standard deviation [Maslov et al., 2016].The PCCF mod-

Sec Method Year DD DP LM LN/A MetaL MetaF Clust CEqSim Ens CPool
3.1 LEARN++⇤ 2011 X X

PMRCD 2012 X X
Dynse 2018 X X
ASE 2017 X X
GraphPool 2018 X X X

3.2 RCD 2013 X X X X X
CPF 2016 X X X X
ECPF 2019 X X X X
PEARL 2022 X X X X

3.3 REDLLA 2012 X X X X X
SUN 2012 X X X X X
ContexTrac 2012 X X X X
ESCR 2021 X X X X X
CDMSE 2021 X X X X
CCP 2010 X X X
UClust 2020 X X X X X X X
CDCMS 2020 X X X

3.4 MM-PRec 2016 X X X X X
PCCF 2016 X
BLPA 2017 X X
CPRD 2019 X X
ProSeed 2016 X X
ProChange 2018 X X X
MDP 2018 X X X X
Nacre 2021 X X X

3.5 SELeCT 2022 X X
FiCSUM 2023 X X

Table 1: Design components of the proposed methods for recur-
rent concept drifts in each section (Sec). DD: Drift Detection, DP:
Drift Prediction, LM: Labels Missing, LN/A: Labels Not Available,
MetaL: Meta Learning, MetaF: Meta Features, Clust: Clustering
CEqSim: Conceptual Equivalence/Concept Similarity, Ens: Ensem-
ble, CPool: Concept Pool. LEARN++⇤: LEARN++.NSE

els recurrent streams as convolutions of Gaussian distribu-
tions of the time intervals between changes. The method
can be used to post-process a detection by a drift detec-
tor or dynamically adjust the sensitivity of a drift detector.
Later, BLPA [Maslov et al., 2017] used PCCF to improve
Bayesian Online Change Point Detector (BOCPD) [Adams
and MacKay, 2007] for recurrent concept drifts. BOCPD
was also used to develop Change Point Recurrence Distri-
bution (CPRD) as an empirical estimate of the recurrent
behavior of observed change points [Reich et al., 2019a;
Reich et al., 2019b]. ProSeed [Chen et al., 2016] uses a prob-
abilistic network that uses stream volatility patterns to predict
future changes. Like PCCF, this method also works indepen-
dently of the drift detection technique. ProSeed was incor-
porated into the drift detector SEED [Huang et al., 2014] to
yield a proactive drift detector. Experimental results showed
that ProSeed performed better than reactive drift detectors for
data streams with reoccurring volatility trends. The same ap-
proach was used in ProChange [Koh et al., 2018] to improve a
drift detector using Hellinger distance to detect virtual drifts
and Hoeffding inequality to detect real drifts for unlabeled
transactional data. Metadata Drift Predictor (MDP) proposes
a dynamically adapting drift detector using drift-related meta-
data clustering [Anderson et al., 2018]. MDP allows the drift
detector to be more sensitive when metadata is similar to
past drifts and more conservative when metadata is dissim-
ilar. In their empirical evaluations, MDP performed more ac-
curately compared to ProSeed. Nacre proposes a framework
that contains a recurrent drift classifier, a sequence predic-
tor, and a drift coordinator for smooth adaptation of recurrent
concept drifts [Wu et al., 2021]. The recurrent drift clas-
sifier maintains a concept repository for previously learned
concepts. The drift sequence predictor predicts the next drift
point based on the previous drift intervals. The drift coor-
dinator manipulates the recurrent drift classifier and the drift

Please refer to section 3 of the survey for more information

Explicit Handling of Recurrences
(model for each data batch)

Meta Learning
(act as a wrapper algorithm to determine

the best model/s for the current concept)

Clustering

Drift Prediction

Meta Features

N Gunasekara, B Pfahringer, HM Gomes, A Bifet, Y S Koh. Recurrent Concept Drifts on Data Streams. International Joint Conferences on Artificial Intelligence (IJCAI), 2024

Evaluation

• Under recurrent concept drift
• Model performance
• Drift Detection performance

Evaluation

Relative Performance

• compares the performance of classifier against a baseline
classifier .

• at instance : [1]

• Cumulative Accuracy Gain: [2]

A
B

i log(Berrori
/Aerrori

)

∑ (accuracy(A) − accuracy(B))

[1] Joao Gama, Raquel Sebastiao, and Pedro Pereira Rodrigues. On evaluating stream learning algorithms. Machine learning, pages 317–346, 2013.

[2] Ocean Wu, Yun Sing Koh, Gillian Dobbie, and T Lacombe. Probabilistic exact adaptive random forest for recurrent concepts in data streams. Int. J. Data Sci. Anal., pages 1–16, 2022.

Evaluation

Model Selection for Each Concept
• measures the strength of the relationship between each

pair [1].

• context: an underlying condition that results in a concept
• measures the context linkage for model reuse (from a model pool)

< model, context >

[1] Ben Halstead, Yun Sing Koh, P Rid- dle, R Pears, M Pechenizkiy, and Albert Bifet. Recurring concept memory management in data streams: exploiting data stream concept
evolution to improve performance and transparency. DM and KD, pages 796–836, 2021

Evaluation

Drift Detection on Synthetic Data (drift points known in advance)
• True drift points are compared to the drift detected points to detect

Type I (FP) and Type II (FN) errors. [1-4]

[1] Robert Anderson, Yun Sing Koh, and Gillian Dobbie. Predicting concept drift in data streams using metadata clustering. In IJCNN, pages 1–8. IEEE, 2018.

[2] Alexandr Maslov, Mykola Pechenizkiy, Indre Zˇliobaite, and Tommi Ka ̈rkka ̈inen. Modelling recurrent events for improving online change detection. In SDM, pages 549–557. SIAM, 2016.

[3] David Tse Jung Huang, Yun Sing Koh, Gillian Dobbie, and Russel Pears. Detecting volatility shift in data streams. In ICDM, pages 863–868. IEEE, 2014.

[4] Yun Sing Koh, David Tse Jung Huang, Chris Pearce, and Gillian Dobbie. Volatility drift prediction for transactional data streams. In ICDM, pages 1091– 1096. IEEE, 2018.

Open Source Software & Benchmark Datasets

• Most methods have custom open source implementations
• Traditional streaming datasets

• Real world: may not know the reoccurrence
• Synthetic : reproducibility

• CapyMOA recurrent concept API

Please refer to: Section 5 & 6 of the survey for more information
N Gunasekara, B Pfahringer, HM Gomes, A Bifet, Y S Koh. Recurrent Concept Drifts on Data Streams. International Joint Conferences on Artificial Intelligence (IJCAI), 2024

Delayed & Unsupervised
Drift Detection

• Most concept drift detection algorithms are applied to the
univariate stream of correct/incorrect classifier
predictions

• Such strategies require that labeled data is available as
soon as possible to respond to concept drifts in a timely
fashion

• Despite their intrinsic differences, most drift detectors
trigger when the observed model’s predictive
performance starts to degrade

Delayed & Unsupervised
Drift Detection

Gomes, H.M., Grzenda, M., Mello, R., Read, J., Le Nguyen, M.H. and Bifet, A., 2022. A survey on semi-supervised learning for delayed partially labelled data
streams. ACM Computing Surveys, 55(4), pp.1-42.

Terminology

Delayed drift detection: The label will arrive at some point in
the future, and it will be used for feeding the learner with a
delayed univariate stream of correct/incorrect predictions

Unsupervised drift detection: The label will not arrive, thus
the detection should be based on the input data or the output
of the learner itself

Delayed & Unsupervised
Drift Detection

Žliobaite, Indre. "Change with delayed labeling: When is it detectable?." In 2010 IEEE international conference on data mining workshops, pp. 843-850. IEEE, 2010.

• Experiment with data generated using the AGRAWAL generator with 3 abrupt
concept drifts (at instances 25, 000, 50, 000, and 75, 000).  

• Used an ensemble algorithm capable of detecting and adapting to changes by
resetting base models whenever changes are detected on their univariate
stream of correct/incorrect predictions.  

• Figure depicts the amount of concept drifts detected (y-axis) over the
processing of 100,000 instances with and without delayed labelling.  

• The detections for the “No delay” experiment shows a high rate of detection
immediately after the concept drifts, except for a few arbitrary drift signals in-
between the concept drifts.

Delayed Drift Detection (Example)

Delayed Drift Detection (Example)

Gomes, H.M., Grzenda, M., Mello, R., Read, J., Le Nguyen, M.H. and Bifet, A., 2022. A survey on semi-supervised learning for delayed partially labelled data streams. ACM Computing Surveys, 55(4), pp.1-42.

STUDD: Unsupervised Concept Drift
Detection using a Student–Teacher

Approach

• Detecting concepts drifts in the absence of labeled data

• Procedure. A predictive model (teacher) is built using an
initial batch of labelled training data. The teacher's
predictions are used as class labels to train a surrogate
model (student), which will learn to mimic the teacher. A
drift detection algorithm is used to identify variations in the
mimicking error of the student.

• Hypothesis. If the mimicking error increases, then it means
that a concept drift has occurred.

Cerqueira, V., Gomes, H. M., Bifet, A., & Torgo, L. (2023). STUDD: A student–teacher method for unsupervised concept drift detection. Machine Learning, Springer

Conclusions

Conclusions

• Practical aspects w.r.t. CD: simulate, evaluate, utilise

• Opportunities in identifying drifts on partially and delayed labeled
settings

• Opportunities w.r.t. recurrent drifts in the intersection with Online
Continual Learning

• Datasets (OCL -> Recurrent SL)
• Model pool management techniques (OCL <- Recurrent SL)

Thank you!
• Consider trying CapyMOA for your drift detection needs!

Contact: heitor.gomes@vuw.ac.nz

Discord

https://discord.gg/RekJArWKNZ https://github.com/adaptive-
machine-learning/CapyMOA

mailto:heitor.gomes@vuw.ac.nz
https://github.com/adaptive-machine-learning/CapyMOA
https://github.com/adaptive-machine-learning/CapyMOA

